Pluriharmonic symbols of commuting Toeplitz operators

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Commuting Toeplitz Operators with Pluriharmonic Symbols

By making use of M-harmonic function theory, we characterize commuting Toeplitz operators with bounded pluriharmonic symbols on the Bergman space of the unit ball or on the Hardy space of the unit sphere in n-dimensional complex space.

متن کامل

Essentially Commuting Toeplitz Operators

For f in L∞, the space of essentially bounded Lebesgue measurable functions on the unit circle, ∂D, the Toeplitz operator with symbol f is the operator Tf on the Hardy space H2 of the unit circle defined by Tfh = P (fh). Here P denotes the orthogonal projection in L2 with range H2. There are many fascinating problems about Toeplitz operators ([3], [6], [7] and [20]). In this paper we shall conc...

متن کامل

Toeplitz Operators and Toeplitz Algebra with Symbols of Vanishing Oscillation

We study the C∗-algebra generated by Teoplitz operators with symbols of vanishing (mean) oscillation on the Bergman space of the unit ball. We show that the index calculation for Fredholm operators in this C∗-algebra can be easily and completely reduced to the classic case of Toeplitz operators with symbols that are continuous on the closed unit ball. Moreover, in addition to a number of other ...

متن کامل

Hyponormality of Toeplitz Operators with Rational Symbols

In this article we introduce a notion of ‘division’ for rational functions and then give a criterion for hyponormality of Tg+f (f, g are rational functions) in the cases where g divides f . Furthermore we show that we may assume, without loss of generality, that g divides f when we consider the hyponormality of Tg+f .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Illinois Journal of Mathematics

سال: 1993

ISSN: 0019-2082

DOI: 10.1215/ijm/1255987059